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On the Validity of an Einstein Relation in 
Models of Interface Dynamics 

P a o l o  B u t t ~  1 
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We consider models of interface dynamics derived from Ising systems with Kac 
interactions and we prove the validity of the "Einstein relation" 0 =/w, where 
0 is the proportionality coefficient in the motion by curvature, # is the interface 
mobility, and ~r is the surface tension. 
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1. I N T R O D U C T I O N  

In  ref. 2 it is shown that  the Glauber  dynamics  in Ising spin systems with 
K a c  interact ions gives rise, in the Lebowi t z -Pen rose  limit, to the equat ion  

-~-  = - m  + t a n h { f l ( J *  m + h)} (1) 

( J *  m being the convolu t ion  of J and m), which describes the evolut ion of 
the magnet ic  profile m = m(r, t). In (1), J is the K a c  potential ,  fl the inverse 
tempera ture ,  and  h the magnet ic  field. In a c o m p a n i o n  paper  (3) it is shown 
that  (1) with h = 0  gives rise to a mo t ion  by curvature.  The result is 
obta ined  under  some assumpt ions  on J, namely  that  J=J( I r l ) ,  J in C 2, 
nonincreasing and identically 0 when [r[ ~> 1. Fur thermore ,  flJ(O) > 1, with 
J(O) = ~ dr J(Ir[ ), namely  fl > tic, the Lebowi t z -Pen rose  critical t empera ture  
with h = 0. (s~ The  equil ibrium magnet iza t ion  at fl > tic are +_m~, where m~ 
is the strictly positive solut ion of 

m~ = tanh { flJ(O) m~ } (2) 
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The interface dynamics is related to the evolution of an initial magnetic 
profile which is equal to rn~ inside a region A o and - r n  B outside of it. In 
ref. 3 it is proved that, under a suitable scaling, the evolution is given by 
a profile which is still rn~ inside a region A, and - rn~  outside of it, with 
~At, the surface of At, moving by curvature, namely 

dr 0 
- -  v ( r )  (3) 

dt R(r) 

with r = r(t) the generic point of the surface which moves by curvature; 
R(r) -~ is ( d - 1 )  times the mean curvature, and v(r) is the unit normal 
vector directed toward the concavity. 0 is a constant, whose explicit 
expression is also derived in ref. 3: 

O= f #(dx) [1 --/~(X)2]~ f dx; fR d 1 dY J( l (x ' -  x)2 + Y211/2) th'(x) 2 (4) 

where 

;~ /~/'(X)2 
rn'(x)2 dx, N - l =  dx 1 - r h ( x )  2 (5) l~(dx) = N 1 - rh(x) 2 

with n~(x) the solution to the d =  1 problem: 

rh=tanh{/~Y*rh}, lira rh(x)= q-m e (6) 
x ~ : t z o o  

with 

J(x) = f~d-1 dy J(Ix 2 +y211/2) (7) 

We refer to ref. 3 for details and notation. 
Spohn (6) has conjectured the validity of an Einstein relation which 

relates the "transport coefficient" 0 appearing in the equation for the 
motion by curvature, the linear transport coefficient/~, which represent the 
mobility of the surface, and a thermodynamic quantity which, in this case, 
is the surface tension o-. As we shall see, it is possible to compute/~ and a 
independently for the model which gives rise to (1). We will prove that the 
value of 0 obtained in ref. 3 is equal to the product Ira, so that the Einstein 
relation 

0=#a  (8) 

is indeed verified in this model. 
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2. S U R F A C E  T E N S I O N  

where 

so that 

The excess free energy associated to m is (1'5'4) 

F(m)= f [f(m)-- f(mt3)] + �88 f dr dr' J(r-r')[m(r)~m(r')] 2 (9) 

where 

_ _  l + m  n 1 1 - m  1 - m  
f ( m ) = - -  ,](0)m2+fl - ~ l + m l o g - - - ~  + # 2  ~ l o g - - 2  2 

1j(O)m2+fl_~m. l + m  1 
- 2 2-1~ ~ +  fi-~ 2 l~ - m 2 )  (10) 

fdrdr'J(r-r ' )~mir)-m(r ')]z=2fdr[3(O)mZ-mJ,m ~ ( I t )  

F(rn) = f dr [g(m) - g ( m e ) ]  (12) 

lm  l + m  1 1 
g(m) = d -  ~log~_m+f i - l~ log(1 -mZ) -~ma*m (13) 

We point out that F(m) is a positive-definite functional of m. Then it is well 
defined for every measurable m, but not finite in general. 

Since rh is interpreted as the interface profile connecting the •  
phases, the surface tension can be expressed as 

L L M 

l i m  1 lim ; @l "" f dYd-, f dx [ g ( m * ) - g ( m . ) ]  
o =  (2L) J - lM~o~ -t_ -L - .  

= f dx [g(m*)-g(me) ] (14) 

where 

m*(r) = tfi(x) (15) 

if r =  (x, Yt,-.-, Ya-~) in a coordinate frame with the x axts orthogonat to 
the equilibrium interface. 
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A more microscopic definition of the surface tension (see ref. 6 and 
references therein) involves the computation of the logarithm (normalized 
by the surface area) of the ratio of two partition functions with different 
boundary conditions. The second one has boundary conditions + on the 
two opposite faces of a cube and periodic conditions on the other ones; the 
first one is defined by conditions + and - instead of + and +. The 
correct procedure for obtaining the surface tension is to take first the ther- 
modynamic limit, then the limit as ~, ~ 0, 7 being the scalus parameter in 
the Kac potential. To my knowledge, there is no proof that this gives rise 
to the value (14). However, if one takes the thermodynamic limit and 
simultaneously ~ ~ 0 ,  in a suitable fashion, then (14) can be proven to 
hold, as it follows from the analysis of ref. 1 and from results recently 
obtained by Cassandro and Vares. 

From (6) and (15) it follows easily that 

g(m*)(r) = �89 J ,  fit + fl ~ log(1 - -  f f / z ) ) ( x )  (16) 

But Eq. (6) implies also 

(1 -- fit2) f l y ,  fit, = fit' (17) 

so that 
d �9 1 

--~xg(m ) = ~ (fit'Y, f i t -  fitY, fit') (18) 

Integrating by parts in (14), we finally obtain 

1 d , 
~= - ~  f dx x ~xg(m ) 

1 f d x d x '  ( x ' - x )  fi t '(x),7(x--x')fi t(x')  
2 

(19) 

3. M O B I L I T Y  

We are looking for a planar traveling wave solution of (1), 

mh(r, t) = mh(x - v(h)t) (20) 

for small h. E. Orlandi and L. Triolo (private communication) have shown 
the existence of a solution for small h which is close to the h = 0 stationary 
solution m*. Avoiding the uniqueness problem, we take this solution and 
expand 

v(h)=v~h+O(h2),  m h = f i t + h O + O ( h  2) (21) 
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From (1), at first order in h, we obtain the following identity: 

- vlrh' = - 0 + ( 1 -  rh2) flY* 0 + f l ( l - n ~  z) (22) 

We multiply both sides of (22) by r h ' ( x ) / [ 1 -  r~(x) 2] and then integrate; 
using (17), we obtain 

vl = -2Nflm~ (23) 

But, by the definition of the mobility, we must have 

v(h) = -2m~#h + O(h 2) (24) 

Equations (23) and (24) imply then 

# = N i l  (25) 

4. CONCLUSIONS 

We can now prove Eq. (8). By substituting (5) in (4) we have the 
following expression for 0: 

�89 f dx r~'(x) f dx' dy J(l(x'  - X) 2 -}- y21 1/2)/77/'(X ') y21 (26) 0 =  

This expression seems quite different from the product #a. In order to 
obtain (8) it is convenient to eliminate the dependence on the Yl variable 
to have 0 expressed in terms of rh and J. We note that 

c? x ' - x ~ ?  
~x--~Jtitx'-x)2q-y2ll/2)( J ' Jl  ~yl j ( J ( x ' - x ) Z  q- y211/2 ) (27) 

Integrating by parts in dx', using (27), and then integrating by parts in dye, 
we obtain 

= �89 f dx dx' (x' - x) rh'(x) J(x - x') r~(x') (28) 0 

Equation (8) follows then from (19), (25), and (28). 
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